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1. Abstract

Extreme heat events are becoming more frequent, intense, and longer as a result of global
climate change. Individual characteristics and conditions amplify exposure and impact of
extreme heat events. I seek to explore how each University of California (UC) campus
community is socially vulnerable to extreme heat in comparison to each other. Using data from
CalAdapt and CalEnviroScreen, I created three cumulative impact indices on the census tract and
campus scale using historic (1961-1990), mid-century (2035-2064), and end of century
(2070-2099) climate projections (RCP 4.5). I analyzed the scores to determine which UC
campuses were most vulnerable and experienced the highest exposure to extreme heat days. |
found that UC Merced and UC Riverside were the most vulnerable overall, and experienced high
exposure to extreme heat and high social vulnerability. I also developed four categories of
vulnerability which each index score adheres to. The results of this tool can be used by campus
planners and stakeholders to inform decision-making on extreme heat adaptation and mitigation.
The index methodology can be replicated for other universities and localities to analyze social

vulnerability to extreme heat.



2. Introduction

Extreme heat will have an increasingly severe impact on the UC campus community due
to global climate change. Despite this, no quantitative research exists to identify these impacts
and determine which UC campus communities will be most affected. I seek to understand which
UC campuses are particularly socially vulnerable to extreme heat and which factors contribute to
this vulnerability. I will also explore how social vulnerability to extreme heat will change
throughout the century as a result of global climate change.

To answer these research questions, I created an Extreme Heat Event (EHE) Vulnerability
Index which measures social vulnerability to extreme heat. Social vulnerability to extreme heat is
defined as the intersection of the physical environment and climate with individual
socioeconomic and health characteristics and conditions. The use of a cumulative impact index is
particularly useful because it provides a holistic and transparent approach to the quantitative
basis for climate decision-making (Morello-Frosch et al., 2011).

This study finds four distinct types of campuses; 1) those with both high heat exposure
and demographic vulnerability, 2) those with high heat exposure but low demographic
vulnerability, 3) those with low heat exposure but high demographic vulnerability, and finally 4)
those with both low heat exposure and demographic vulnerability. Several campuses fall into
multiple categories depending on the time period of extreme heat projection.

This study advances an understanding of how UC campus communities are differentially
impacted by extreme heat. The index findings can be used by policymakers and planners to
inform resource allocation for heat mitigation and adaptation solutions. Campuses that are

identified as high heat exposure and high demographic vulnerability should be prioritized for



extreme heat planning. This study also provides a quantitative model for measuring extreme heat
that can be replicated by other universities and localities.

The results of this analysis provide compelling evidence on the need for rapid
decarbonization and climate adaptation solutions by UC leadership. Therefore, it simultaneously
advances the goals of the UC Carbon Neutrality Initiative, which is a UC wide commitment to
achieve carbon neutrality in scope-one emissions by 2025. Without successful climate
mitigation, the UC campus community will increasingly endure health impacts from extreme
heat events. These impacts will fall on the most socially vulnerable members of the UC

community.

3. Literature Review

In the past 30 years, extreme heat has caused the most weather related deaths in the
United States (NOAA, 2020). As a result of global climate change, extreme heat events are
continuing to become more frequent and intense. EHEs are defined as “stagnant, warm air
masses” that lead to consecutive nights with warm temperatures (Luber & McGeehin, 2008).
EHEs are projected to continue increasing in intensity and duration as a result of human
activities, particularly the addition of greenhouse gasses (Sarofim, 2016). These events have a
wide range of impacts including; increased rate of heat related illness and death, increased water
and power demand, impacts to agriculture, and damage to the natural environment (EPA, 2021;
OEHHA & calEPA, 2018; Wuebbles et al., 2017). The impact of extreme heat varies across
populations. Social vulnerability to extreme heat is determined by two main factors: the physical
environment and climate, and individual socioeconomic and health characteristics and conditions

(Wilhelmi & Hayden, 2010; Kovats & Hajat, 2008).
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Figure 1: Contributing factors to social vulnerability to extreme heat

3.1: Physical Environment and Climate

The wide variety of California climate and geography results in a range of exposure to
extreme heat. Despite this, the majority of California has already experienced an increase in
extreme heat, although at different rates across the state. By 2050, heat waves in the Central
Valley could last two weeks longer, and occur four to ten times as frequently in the Northern
Sierra (State of California, 2022).

The local physical environment impacts how people experience extreme heat events. In
general, urban populations experience these impacts more than rural populations (Reidmiller et
al., 2018). This is in part due to the urban heat island effect in urban centers and areas with little

vegetative land cover. The urban heat island effect refers to the phenomena where urban areas



experience higher temperatures than rural areas. Structures like roads and buildings absorb and

re-emit the sun’s heat at higher rates than natural landscapes (EPA, n.d.).

3.2: Individual Socioeconomic and Health Characteristics and Conditions

A wide range of individual characteristics and conditions can amplify the impact of
extreme heat events on health. Some physical characteristics amplify the health impacts of
extreme heat, particularly among older adults, children, and pregnant people. These people are
less physiologically capable of adjusting to extreme heat (Hayden et al., 2011). Furthermore,
pre-existing medical conditions like asthma or cardiac diseases can be exacerbated during an
extreme heat event (EPA, 2021). Additionally, unhoused people and those who work outside are
less protected from the heat and thus experience increased heat related illness and death
(Gubernot et al., 2015). Social factors like linguistic isolation, fear of crime, and
cultural/linguistic isolation can inhibit people from coping with extreme heat (Gronlund, 2014).

Race and class also have a significant impact on vulnerability to extreme heat. Low
income communities also have a reduced capacity to prepare for and cope with extreme heat
events (Jay et al., 2018). This means that these groups have fewer social, financial, and physical
resources to reduce their exposure to heat and systematically reduce potential harm (Hayden et
al., 2011). Race and ethnicity is increasingly a determinate in vulnerability to extreme heat.
Between 2005 and 2015, heat related emergency department visits for minority populations grew
at a much faster rate for white populations in California. This is likely explained by occupational
differences. For example, many more Hispanic and Latino Californians work in agriculture than

white Californians, and are more exposed to extreme heat (Abualsaud, 2019).
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3.3: Social Vulnerability to Extreme Heat

Together, these factors determine the social vulnerability of a community. Social
vulnerability refers to “the propensity or predisposition to be adversely affected” to climate
impacts as determined by exposure, susceptibility to harm, and ability to adapt (Oppenheimer et
al., 2014). More socially vulnerable populations experience an elevated rate of heat related
illness and death (State of California, 2022). These types of illness include heat cramps, heat
exhaustion, heatstroke, and hyperthermia (Sarofim, 2016). Low income and minority populations
in urban areas are the most vulnerable groups to heat related mortality (Hayden et al., 2011).

The unequal distribution of urban heat islands exemplifies the interaction between
exposure and individual characteristics. The urban heat island effect disproportionately impacts
disadvantaged communities. This is in part due to past planning decisions that have shaped the
urban environment and housing inequality (Wilson, 2020). For example, areas that were targeted
for disinvestment under redlining now have higher land surface temperatures than those that
were not (Wilson, 2020). Additionally, low income and minority populations are more likely to
live in these neighborhoods and thus experience greater exposure to heat (Harlan et al., 2006;
Chakraborty et al., 2019).

In summary, the increasing frequency and intensity of extreme heat events
disproportionately impacts disadvantaged urban communities, and people with conditions or
characteristics that make them more susceptible to heat related illness. These patterns of

inequality may be repeated within University of California campus communities.

3.4: University of California Context
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Understanding who is affected by extreme heat and why they may have increased
exposure is of central importance for policymakers and planners. The evaluation of vulnerability
and exposure to extreme heat across populations is critical for the creation of effective and just
policy responses (Benz & Burney, 2021). However, there is little academic consensus on how
these evaluations of vulnerability should be conducted. Thus, it is important to develop “novel
comprehensive and comparative” methods for evaluating vulnerability to extreme heat (Karanja
& Kiage, 2021, p.3). Therefore, this study aims to understand how the community members
around the University of California campuses are differentially affected by extreme heat events
using a comparative and cumulative impact index.

A disproportionate amount of UC students are likely vulnerable to extreme heat events
due to their income and race. A large portion of UC students come from low income families. In
2018, 48% of UC students experienced food insecurity and seven percent of UC students
experienced housing insecurity (University of California, 2021). The UC student population is
also very racially diverse. In 2020, less than 30% of domestic UC students identified as White,
and over 60% of the domestic UC students identified as Asian or Hispanic/Latin0. Additionally,
the demographic group least able to access air conditioning throughout the United States are
people living in the West who are of two or more races (non-Hispanic), 25-34 years old, and
making less than $30,000 per year (Wilhelmi et al., 2021). Many UC affiliates, specifically
graduate and older undergraduate students, likely fall into this category. UC staff members may
also be disproportionately impacted by extreme heat events; the majority of “professional and
support staff” are people of color (University of California, 2021). These characteristics amplify

the impacts of extreme heat events on the student population.
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Thus far, there has been little research on how to measure social vulnerability to extreme
heat and other climate related impacts among UC students, staff, and faculty. In particular, it is
difficult to understand exactly how students, staff, and faculty are affected by extreme heat
events using existing data. First, these groups travel to campus from many different localities due
to high housing prices and limited on campus housing. This makes on campus census tracts an
unviable unit of analysis. Furthermore, international students, students who use their parent's
address, undocumented students, and students with limited English may not be accurately
represented in the census (deBoer et al., 2017). Data on students who use their parent’s address
to complete the census is disconnected from the geographical sitting of each campus.
International residents, undocumented residents, and those with limited English skills are often
discouraged from taking the census due to political, cultural, and language barriers. It is my hope
that this index will aid campus and city planners in identifying the most socially vulnerable

communities and effectively conducting just extreme heat resiliency planning.

3.5: Index Construction

Existing literature stresses the importance of cumulative impact analysis on the
neighborhood scale for analyzing differential vulnerabilities to environmental and climate
stressors. It is important to assess vulnerability to extreme heat events using a cumulative index
as minority and low income groups are exposed to multiple social stressors (Morello-Frosch,
2011). Johnson et al. (2012) present a justification for using cumulative social and environmental
indices for measuring differential vulnerability to extreme heat. It proposes an Extreme Heat
Vulnerability Index (EHVI) which predicts local vulnerability to extreme heat events in various

census tracts in Chicago, Illinois. The study argues that vulnerability indices can be effectively
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applied on scales smaller than the county level (Johnson et al., 2012). This is an important basis
for the creation of the EHEVI in this study, which is conducted on the census tract scale. They
also write that most climate vulnerability models exclusively analyze either sociodemographic
variables or the built environment. Despite this, community vulnerability to heat is most
accurately gauged when an index combines physical and social variables (Johnson et al., 2012).
My study applies principles outlined in Johnson et al.’s EHVI by including sociodemographic
and physical/environmental characteristics. It is limited, however, because it does not include
racial and age related variables.

My study also employs demographic data and the index calculation methodology from
CalEnviroScreen 4.0. CalEnviroScreen 4.0 is a geographic cumulative environmental risk
assessment created by the California Office of Environmental Health Hazard Assessment
(OEHHA). The tool creates a “CalEnviroScreen score” which combines a Population
Characteristic score, which measures individual conditions and characteristics, with a Pollution
Burden score, which measures the presence and severity of a variety of environmental hazards. I
used the Population Characteristic data as a tool for measuring individual socioeconomic and
health characteristics and conditions. I used the CalEnviroScreen score algorithm methodology
as a basis for this study’s score development. This method and data source was selected because
CalEnviroScreen 4.0 provides an effective and widely accepted mechanism for developing a
simple census tract cumulative vulnerability index.

The “Population Characteristic” presented in CalEnviroScreen employs variables for
evaluating the cumulative effect of multiple non-environmental stressors on extreme heat health
outcomes. The Population Characteristic is calculated by assessing the cumulative impact of

seven health and socioeconomic indicators. While the CalEnviroScreen Population Characteristic
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does not include race as an indicator, the results of the tool reflect racial disparities as
communities of color most often live in the most impacted areas (August et al., 2021).
Furthermore, the health indicators included in the score are disproportionately experienced by
people of color, particularly African-American people (Morello-Frosch, 2011).

While the variables included in the Pollution Burden score are not relevant for the
creation of the UC Extreme Heat Vulnerability Index, the methodology for creating the overall
CalEnviroScreen score provides a methodological basis for the index creation in this study. The
CalEnviroScreen score is created by multiplying the population characteristic score and pollution
characteristic score. According to the OEHHA, the multiplicative aspect of the score is useful for
several reasons. First, it reflects how the indicators included in Population Characteristics often
modify and multiply how people experience environmental risks. Next the multiplication of the
two characteristics reflects that some people may be more sensitive to risk than others. Finally,

the multiplicative model is widely accepted as a method for assessing risk.

pmmmm  CalEnviroScreen
I Score

Figure 2: CalEnviroScreen Score calculation methodology. Adapted from CalEnviroScreen

4: Methods
Area of study
Considering the limitations with using existing datasets for student populations discussed

above, I have chosen to focus my analysis on census tracts directly adjacent to main UC
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campuses. While it is impossible to tell exactly how many students, staff, and faculty live in
these areas, it is likely that many of these census tracts have high populations of UC affiliates. I
expect that the chosen area of study will also reveal vulnerability inequalities across the
neighborhoods surrounding each UC campus.

The nine UC Campuses included for analysis are: UC Berkeley (UCB), UC Davis
(UCD), UC Irvine (UCI), UC Los Angeles (UCLA), UC Merced (UCM), UC Riverside (UCR),
UC San Diego (UCSD), UC Santa Barbara (UCSB), and UC Santa Cruz (UCSC). I excluded UC
San Francisco from my analysis because it does not have a central campus location, large
undergraduate population, or a significant population of campus affiliates in direct proximity to
campus facilities.

In total, 60 census tracts were included for analysis. However, the quantity of census
tracts per campus varied. The average number of census tracts per campus was 6.67. The
minimum number was five (UCSC, UCSB), and the maximum was nine (UCI, UCLA). The
census tract which included the main campus was excluded at UCB and UCLA because there

was insufficient data available in CalEnviroScreen.

Data Acquisition

I retrieved census tract level quantitative data from each census tract bordering a UC
campus using data provided by the CalAdapt and CalEnviroScreen 4.0 (Appendix 5). I combined
one indicator from each source to allow for cumulative analysis of environmental (CalAdapt)
and sociodemographic (CalEnviroScreen) data.

I sourced environmental indicators from CalAdapt. CalAdapt is a tool developed by the

Geospatial Innovation Facility at UC Berkeley. I used data on the number of “extreme heat
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days" in lieu of the number of extreme heat events, which was not available. CalAdapt defines
“extreme heat day” as a day where the “daily maximum/minimum temperature exceeds the 98th
historical percentile of daily maximum/minimum temperatures" using historical data
(1961-1990) from April to October. I utilized the baseline, mid-century, and end of century
“extreme heat day” measurement and projections to create three distinct vulnerability indices.
The mid-century and end of century models were created using a medium emission (RCP 4.5)
scenario. RCPs measure different plausible scenarios of future greenhouse gas emissions. I chose
this scenario because it is the most realistic given current emissions and commitments from

government agencies and private industries.

Table 1: CalAdapt Scenarios

Scenario Title Time Period Emission Scenario

Baseline Extreme Heat Days ~ 1961-1990 None (historical data)
Mid-Century Extreme Heat 2035-2064 RCP 4.5 (medium emissions)
Days

End of Century Extreme Heat 2070-2099 RCP 4.5 (medium emissions)
Days

Source: CalAdapt

I sourced my population indicator from CalEnviroScreen. CalEnviroScreen 4.0 is a
cumulative impact model that uses data from multiple sources to create a nationwide assessment
using environmental quality and sociodemographic data. I utilized the “Population
Characteristic”, which includes seven sub-indicators. These indicators are asthma rates,

cardiovascular health, percent low birth weight infants, housing burden, low income population,
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linguistic isolation, poverty rates, and unemployment (CalEnviroScreen, 2021). A low

population characteristic signifies a lower level of social vulnerability.

Table 2: Indicator Information

Population Characteristic

Extreme Heat Days
(Baseline, Mid-century, End
of Century)

Year Published

Source

Primary or Secondary

2021

https://oehha.ca.gov/calenviro
screen

Secondary, sourced from
multiple datasets. Full
inventory available at
https://oehha.ca.gov/media/do
wnloads/calenviroscreen/repo
rt/calenviroscreen40reportf20
21.pdf

2018

https://cal-adapt.org/tools/extr
eme-heat/

Secondary, sourced from
multiple datasets. Full
inventory available at
https://cal-adapt.org/tools/extr
eme-heat/

Data Processing

I used the three Extreme Heat Day projections to create an Extreme Heat Day Score for

each model. This score assesses the number of extreme heat days per census tract in comparison

to the other census tracts included in my analysis. It was created by dividing the amount of

recorded/projected extreme heat days per year by census tract by the overall average number of

extreme heat days, and then multiplying by 100 to place the score on the same scale as the

population characteristic. The resulting number is referred to as an Extreme Heat Score. A low

Extreme Heat Day Score signifies a lower amount of experienced/projected heat days.
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Extreme Heat Score = (number of projected/recorded extreme heat days + average number of

extreme heat days projected/recorded") x 100

Index Creation

I created the EHE vulnerability scores by multiplying the population characteristic with
the Extreme Heat Day Score for each census tract and projection model. I then divided each
result by 100 to find the final EHE Vulnerability Score. Across all models, the EHE

Vulnerability Scores ranged from 7.2 (least vulnerable) and 143.7 (most vulnerable).

EHE Vulnerability Score = (Extreme Heat Score x Population Characteristic) + 100

Assumptions and Limitation

This index is most useful to examine the vulnerability scores in relation to the other
campuses in each model. It is important to note that this index should not be used to compare
scores between one campus method to evaluate change in vulnerability over time. Instead, this
tool develops a score for each campus based on its vulnerability compared to other campuses
within each model. Therefore, the scores do not reflect the change in vulnerability over time.
Additionally, because the population characteristic is a constant throughout the models, variation
between the models represents an increase of extreme heat days on each campus.

This index also assumes that the characteristics of the built environment are constant
across census tracts. It does not include a variable on the built environment, and thus does not

reflect extreme heat variation as a result of the urban heat island effect.

! Baseline average- 3.4 days, Mid-century average- 12.49 days, End of Century average- 17.61
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5: Findings

The findings portion of my research categorizes each UC Campus into one or two

categories based on their population and climate data in comparison to other campuses. It will

discuss the findings of each UC Campus in the baseline, mid-century, and end of century models.

Table 3: Extreme Heat Event Vulnerability Scores (EHEVS) By Campus

Campus Baseline EHEVS ~ Mid-Century EHEVS End-Century EHEVS
ALL CAMPUS 43.83 47.52 47.67
AVERAGE

UC LOS ANGELES 21.54 18.21 19.34
UC SANTA CRUZ 26.68 15.41 15.85
UC IRVINE 27.42 22.34 22.45
UC SAN DIEGO 31.81 30.20 30.51
UC BERKELEY 39.00 19.08 18.07
UC DAVIS 49.74 72.35 70.50
UC SANTA 54.96 35.72 30.64
BARBARA

UC RIVERSIDE 78.86 118.07 114.20
UC MERCED 80.11 117.56 128.27

Source: CalEnviroScreen, CalAdapt

There were a vast range of EHE Vulnerability Scores between campuses. Across each

model, UCLA has the lowest EHE vulnerability score and UC Merced has the highest EHE

vulnerability score. Detailed information on the composition of each score is included in the
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appendix (Appendix 1). Each campus fell into one of four categories; 1) high extreme heat days,
high population characteristic, 2) high extreme heat days, low population characteristic, 3) low
extreme heat days, high population characteristic, and 4) low extreme heat days, low population
characteristic. These categories are determined based on whether the population characteristic

and extreme heat score for each campus was above or below the UC wide average (Appendix 4).

Baseline EHE Score Types per Campus
Type 3 Type 1
uco
: Ucm
ucs UCse .'J(_'R
Ucse, Ucl
ucso

UcLA

Type 4 Type 2

Population Characteristic

Figure 3: Baseline EHE Vulnerability Score Type Categorization
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Mid Century EHE Score Types per Campus
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Figure 4: Mid-Century EHE Vulnerability Score Type Categorization

End of Century EHE Score Types per Campus
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Figure 5: End of Century EHE Vulnerability Score Type Categorization
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Type 1) High Extreme Heat Days, High Population Characteristic

UC Riverside and UC Merced are classified as Type 1 among all three models. As
viewed in Figures 6 through 8, the EHE Vulnerability scores for these campuses are much higher
than the rest of the campuses. This signifies a large increase in extreme heat days compared to
other campuses. In the baseline model, the majority of census tracts at UCR and UCM are above
the 75th percentile of the total UC EHE Vulnerability Scores. In the mid-century and end of
century models, all census tracts are above the 75th percentile of the total UC EHE Vulnerability
Scores (Appendix 3).

UC Santa Barbara is classified as Type 1 in the baseline model. This signifies that the
area has historically experienced a higher proportion of extreme heat days than many other UC
campuses. 60% of census tracts within the baseline model are above the 75th percentile of the
total UC EHE Vulnerability Scores (Appendix 3). However, in the mid and end of century

models UC Santa Barbara is predicted to have a lower proportion of extreme heat days.

Type 2) High Extreme Heat Days, Low Population Characteristic

UC Davis is classified as a Type 2 campus across all three models. This means that, while
the campus experiences a high level of extreme heat days compared to other campuses, it has a
lower than average population characteristic. Despite the lower population characteristic, it has a
relatively high EHE vulnerability score due to the high level of extreme heat days. In the
mid-century and end of century models, UC Davis has the third highest EHE Vulnerability score
of the campuses. Each model also has at least one census tract that is above the 75th percentile

of the total UC EHE Vulnerability Scores (Appendix 3).
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UC Berkeley is classified as a Type 2 campus in the baseline model. This signifies that
the area has a lower than average population characteristic, but has historically experienced a
higher proportion of extreme heat days than many other UC campuses. Despite this, none of the
tracts in the UC Berkeley baseline model are above the 75th percentile of the total UC EHE

Vulnerability Scores (Appendix 3).

Type 3) Low Extreme Heat Days, High Population Characteristic

The mid-century and end of century models at UC Santa Barbara are the only EHE
Vulnerability scores that meet the Type 3 criteria. This campus is projected to experience
relatively few extreme heat days compared to the UC, despite having a high population
characteristic score. The decline in EHE Vulnerability Scores from the Baseline Model to the
other two models signifies a slower rate of projected extreme heat days than the UC average.
Despite the high population characteristic, none of the Type 3 campus models contain a census
tract with a EHE Vulnerability Score above the 75th percentile of the total UC EHE

Vulnerability Scores (Appendix 3).

Type 4) Low Extreme Heat Days, Low Population Characteristic

UC Los Angeles, UC Santa Cruz, UC Irvine, and UC San Diego are classified as Type 4
throughout all models. This means that the campuses experience relatively few extreme heat
days, and have a low population characteristic. UC Berkeley is classified as a Type 4 campus in
the mid-century and end of century models. This signifies that UC Berkeley is predicted to have

a lower proportion of extreme heat days than other UC Campuses.None of the Type 4 campus
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models contain a census tract with a EHE Vulnerability Score above the 75th percentile of the

total UC EHE Vulnerability Scores (Appendix 3).

Throughout the models, type 1 and 2 campuses become increasingly stratified from the
Type 3 and 4 campuses. In the baseline model, EHE Vulnerability scores across campuses are
more similar across campuses. Additionally, the Type 3 campus (UCSB) has a higher EHE
Vulnerability score than a type 3 campus (UCD). Conversely, in the mid-century and end of
century models, the type 1 and 2 campuses have much higher EHE Vulnerability Scores than the
Type 3 and 4 campuses. This is reflective of the high rate of predicted extreme heat day

frequency in inland campuses (UCM, UCR, UCD) compared to the coastal campuses.

6. Discussion

The results outlined above provide a quantitative measure of vulnerability to extreme heat
across UC campuses. In the mid-century and end of century models, the three most inland
campuses, UC Merced, UC Riverside, and UC Davis, are predicted to be the most vulnerable to
extreme heat. They also are projected to experience more rapid increases in extreme heat days
relative to the other campuses. This reflects statewide trends; inland California is increasingly
prone to extreme heat and is home to a disproportionate amount of disadvantaged communities.
UC Davis is unique, however, because it has a below average population characteristic. This may
be a result of historical and contemporary planning decisions that limit the ability of
disadvantaged people to live in Davis such as the frequent usage of restrictive covenants (Keller,

2018). The EHE Vulnerability score of UC Santa Barbara is reflective of the slow rate of
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extreme heat frequency in coastal campuses. Historically, UCSB was identified as the third most
vulnerable campus. This was largely due to its high population characteristics. This could be a
result of the high density of student housing on campus and in the Isla Vista area (census tracts
29.28, 29.26, and 29.24). In the mid-century and end of century models, however, the campus
has a much lower vulnerability score than the inland campuses. This is reflective of the slower
rate of predicted extreme heat frequency. UCSB is projected to experience a 150% increase in
extreme heat days from the baseline to mid-century model, and an additional 20% increase from
the mid-century model to the end of century model. This rate of increase is much slower than UC
Merced, for example, which is projected to experience a 380% increase in extreme heat days
from the baseline to mid-century model, and a further 50% increase from the mid-century model
to end of century model.

Despite the utility of these results in identifying particularly vulnerable campuses,
comparing campus to campus averages can overlook the uneven vulnerability within each
campus. This exemplifies the Modifiable Areal Unit Problem, which occurs when geographical
data is altered depending on the spatial scale used (Buzelli, 2020). While some campuses have
relatively homogenous scores, other campuses have much larger differences in EHE
Vulnerability Scores between tracts (Appendix 2).

For example, while UCLA is considered the least vulnerable campus, there remains
vulnerable tracts that should be the subject of extreme heat planning. Notably, census tract
2653.03, the most vulnerable tract, has an EHE Vulnerability Score over six times that of tract

2621. Census tract 2653.03 is occupied predominantly by students, and has a higher percentage

26



of people of color and people in poverty®. Conversely, census tract 2621 encompasses Bel Air,
which is a wealthy housing development. Very few students live in the tract, are in poverty, or
are people of color’. Considering this, the extremely low campus average obscures the vulnerable
populations within the campus.

To prevent overlooking these differences, it is necessary to analyze each campus on a
census tract scale. While a detailed analysis of each campus is beyond the scope of this study, the
accompanying mapping figures provide information on the distribution of vulnerability across
census tracts (Appendix 5).

Campus planners and stakeholders should use these tools to prioritize campuses and
census tracts for heat mitigation and adaptation measures. This index and accompanying
mapping tools allows planners to prioritize resources and develop solutions based on the
cumulative impact of the sociodemographic characteristics and local climate of a place.
Adaptation measures should be prioritized in vulnerable communities as identified by this index.
Potential heat adaptation solutions could include the expansion of tree canopies, increased access
to cooling centers, and installation of green roofs and cool streets (US EPA, 2018). Additionally,
heat adaptation measures must be coupled with greenhouse gas emission reductions in order to

see a significant decrease in extreme heat (Krayenhoff et al., 2018).

Conclusion
This study proposes an index which identifies the UC campuses most and least socially

vulnerable to extreme heat over the next century. The inland campuses, UC Merced, UC

2 Tract 2653.03 Characteristics- 68.39% of residents are people of color, and 62.67% of residents are in poverty
(ACS 2015-2019).

? Tract 2621 Characteristics- 24.53% of residents are people of color, and 5.58% of residents are in poverty (ACS
2015-2019)
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Riverside, and UC Davis, were found to be the most socially vulnerable across each model. UC
Los Angeles, UC Santa Cruz, and UC Irvine were found to be the least vulnerable across each
model. Variation across models occurred as a result of the differential pace in increase of extreme
heat days. This tool can be used by campus planners and stakeholders to better understand which
campuses are most in need of extreme heat mitigation, adaptation, and resiliency planning and
resources.

This study has significant limitations which impact the ability of the EHE Vulnerability
Index to effectively measure the impacts of extreme heat among campus populations. First, the
index does not include an indicator to account for the built environment. Unlike other studies,
which include variables such as vegetative land cover, this index only measures population and
climate trends. However, the consideration of built environment, sociodemographic, and climate
trends must all be considered in successful heat mitigation and adaptation strategies (Wilson,
2022). Decision makers using this index should also consider the impact of the urban heat island
effect in vulnerability of communities to extreme heat. Secondly, as discussed previously, is it
unclear how many students are included in this study due to the lack of accurate census data on
student populations. Finally, this study does not address how the COVID-19 pandemic may have
altered campus vulnerability to climate change. All data used in this study was collected before
the onset of the pandemic to prevent abnormalities. Despite this, previous research concludes
that the intersection of COVID-19 and extreme heat made more people vulnerable to extreme
heat and amplified existing systematic vulnerabilities (Wilhelmi et al., 2021).

Future research should focus on analyzing the historical causes of unequal vulnerability
within each UC Campus, expand the EHE Vulnerability Index to include a built environment

indicator, and explore how the COVID-19 pandemic affected UC students' vulnerability to
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extreme heat. Additionally, comprehensive data collection should be conducted to achieve an

accurate understanding of how UC students are impacted by extreme heat events.
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6. Appendices

Appendix 1: Campus Overview Scores

Campus Baseline Mid- End- Pop Baseline Mid- End-
EHEVS Century Century  Char  Average Century Century
EHEVS EHEVS Days Average  Average

Days Days

ALL 43.83 47.52 47.67 4122 3.47 12.71 17.90

CAMPUS

AVERAGE

UC LOS 21.54 18.21 19.34 28.81 2.44 8.00 12.11

ANGELES

UC SANTA 26.68 15.41 15.85 31.12  3.00 6.40 9.20

CRUZ

UC IRVINE 27.42 22.34 22.45 31.08 3.00 9.00 12.56

UC SAN 31.81 30.20 30.51 40.05 2.67 9.50 13.50

DIEGO

ucC 39.00 19.08 18.07 33.15  4.00 7.25 9.63

BERKELEY

UC DAVIS 49.74 72.35 70.50 38.98 4.33 23.17 31.83

UC SANTA 54.96 35.72 30.64 46.72  4.00 9.60 11.60

BARBARA

ucC 78.86 118.07 114.20 67.03  4.00 22.00 30.00

RIVERSIDE

UC MERCED  80.11 117.56 128.27 65.16 4.17 22.50 34.67

This score was created by combining population characteristic (Pop Char) data sourced from
CalEnviroScreen with average annual number of extreme heat days across three climate models
(Baseline Average Days, Mid-Century Average Days, End of Century Average Days) data
sourced from CalAdapt.
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Appendix 2: Range in Campus EHE Vulnerability Scores

Campus Baseline Mid-Century End-Century = Average Range
EHEVS EHEVS EHEVS Across Models
Range Range Range

ALL CAMPUS AVERAGE  36.99 32.29 31.91 33.73

UC BERKELEY 54.07 26.27 25.89 35.41

UC Davis 36.16 47.25 46.08 43.16

UC IRVINE 28.00 22.86 24.35 25.07

UC LOS ANGELES 38.78 26.24 27.92 30.98

UC MERCED 43.40 45.28 42.38 43.68

UC RIVERSIDE 36.54 54.71 52.92 48.06

UC SAN DIEGO 45.29 30.97 31.73 36.00

UC SANTA CRUZ 13.68 4.71 4.04 7.48

This score was created by combining population characteristic (Pop Char) data sourced from
CalEnviroScreen with average annual number of extreme heat days across three climate models
(Baseline Average Days, Mid-Century Average Days, End of Century Average Days) data
sourced from CalAdapt.
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Appendix 3: Percent of Census Tracts with EHE Vulnerability Scores Above 75th Percentile

Baseline EHE
Vulnerability Score

Mid Century EHE
Vulnerability Score

End Century EHE
Vulnerability Score

UC Berkeley

UC Davis

UC Irvine

UC Los Angeles
UC Merced

UC Riverside

UC San Diego

UC Santa Barbara

UC Santa Cruz

0%

16.67%

0%

0%

83.33%

83.33%

0%

60%

0%

0%

33.34%

0%

0%

100%

100%

0%

0%

0%

0%

33.34%

0%

0%

100%

100%

0%

0%

0%
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Appendix 4: Campus Population and Heat Score Greater or Less than UC Average

Campus Population Baseline Mid-Century  End Century

Characteristic Extreme Heat Extreme Heat Extreme Heat

(average= Days Days Days
41.22) (average= (average= (average=
3.47) 12.71) 17.90)

UC LOS ANGELES low low low low
UC SANTA CRUZ low low low low
UC IRVINE low low low low
UC SAN DIEGO low low low low
UC BERKELEY low high low low
UC DAVIS low high high high
UC SANTA BARBARA  high high low low
UC RIVERSIDE high high high high
UC MERCED high high high high

This score was created by combining population characteristic (Pop Char) data sourced from
CalEnviroScreen with average annual number of extreme heat days across three climate models
(Baseline Average Days, Mid-Century Average Days, End of Century Average Days) data
sourced from CalAdapt.
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Appendix 5: All Census Tract Extreme Heat Vulnerability Scores

Campus +
Tract

ALL
CAMPUS
AVERAGE

UC BERKELEY

campus
average

6001421600

6001423700

6001422400

6001422500

6001422800

6001422700

6001400100

6001422900

UC DAVIS

campus
average

6113010704

6113010602

6095253300

6113010701

Baseline
EHEVS

29.31

39.00

5.43

23.74

37.17

38.23

43.24

50.97

53.69

59.50

49.74

40.11

40.99

42.62

4731

Mid-Century End-Century Pop. Char
EHEVS

EHEVS

24.11

19.08

2.96

11.31

17.71

18.21

20.60

24.28

29.23

28.35

72.35

52.41

64.15

63.82

74.05

22.76

18.07

2.62

11.46

16.15

16.61

18.78

24.60

28.51

25.85

70.50

51.11

61.33

63.78

73.07

34

40.87

33.15

4.62

20.18

31.60

32.49

36.75

43.32

45.64

50.58

38.98

27.27

34.84

36.23

40.21

Daily
Maximum
Temperature

93.97

87.84

89.6
87.3
87.7
87.7
88.3
87.3
86.5

88.3

103.32

103.1
103.4
103.6

103.2



6113010501 51.14
6113010703 76.27
UC IRVINE

campus 27.42
average

6059062629 14.35
6059062604 14.41
6059062644 15.66
6059062610 23.13
6059063007 24.20
6059062614 31.39
6059062627 40.48
6059062611 40.84
6059062626 42.34
UC LOS ANGELES
campus 21.54
average

6037262200 7.20
6037262100 7.65
6037265420 9.83
6037265100 10.34
6037265201 21.52
6037265305 23.16
6037265202 29.59

80.04

99.65

22.34

11.72

11.77

12.79

18.89

19.76

25.63

33.06

33.35

34.58

18.21

8.82

8.33

7.14

11.25

17.57

25.21

24.17

76.52

97.18

22.45

11.08

11.13

12.09

19.35

18.69

26.26

33.87

34.17

3542

19.34

10.42

9.60

7.60

10.98

20.77

24.59

24.76

35

43.47

51.86

31.08

16.26

16.33

17.74

26.21

27.42

35.57

45.88

46.29

47.99

28.81

12.23

13.00

11.15

17.57

36.58

39.37

33.54

103.5

103.1

88.79

91.5

87.7

86.5

89.5

86.9

87.9

89.7

89.7

89.7

90.70

89.7

90.9

92.9

90.5

93.9

88.4

90



6037265304

6037265303

UC MERCED

campus
average

6047001801

6047002600

6047002500

6047001101

6047001002

6047001901

UC RIVERSIDE

campus
average

6065042206

6065046500

6065042213

6065030501

6065042210

6065042209

38.63

45.98

80.11

59.97

69.90

79.90

83.59

83.92

103.37

78.86

60.19

75.09

75.67

78.39

87.10

96.73

UC SAN DIEGO

campus
average

6073008312

31.81

14.72

28.04

33.38

117.56

89.79

104.65

125.06

125.15

125.64

135.07

118.07

90.11

112.43

113.30

117.36

130.41

144.83

30.20

18.03

29.83

35.51

128.27

101.32

114.71

134.98

137.18

137.72

143.70

114.20

87.15

108.74

109.58

113.51

126.13

140.07

30.51

18.48

36

43.78

52.11

65.16

50.98

5941

67.91

71.05

71.33

70.29

67.03

51.16

63.83

64.32

66.63

74.04

82.22

40.05

25.03

90

90

103.73

103.9

104

103

104.1

104.1

103.3

103.25

102.3

103.6

102.3

103.6

103.6

104.1

92.17

92.2



6073008305 23.65 21.46 21.31 26.80 92.4

6073008339 27.54 33.74 34.56 46.82 92.5
6073008340 29.08 26.39 26.20 32.96 92.4
6073008341 35.89 32.56 32.33 40.67 92.4
6073008361 60.01 49.01 50.21 68.01 91.1

UC SANTA BARBARA

campus 54.96 35.72 30.64 46.72 89.08
average

6083002915 36.30 24.70 21.03 30.86 89.4
6083002922 36.57 24.89 21.18 31.09 88.4
6083002924 61.38 37.60 32.59 52.18 89.1
6083002926 62.08 38.02 32.96 52.76 89.1
6083002928 78.48 53.41 45.46 66.71 89.4

UC SANTA CRUZ

campus 26.68 15.41 15.85 31.12 92.6
average

6087100500 20.11 13.69 15.53 34.19 92.9
6087120200 24.71 15.13 14.31 21.00 91
6087120700 24.93 13.57 14.44 28.25 93
6087100300 29.86 16.26 15.37 33.84 93.1
6087100400 33.79 18.40 19.57 38.30 93

This score was created by combining population characteristic (Pop Char) data sourced from
CalEnviroScreen with average annual number of extreme heat days across three climate models
(Baseline Average Days, Mid-Century Average Days, End of Century Average Days) data
sourced from CalAdapt.
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